眉毛淡的女人代表什么| 什么蛋营养价值最高| 开塞露用多了有什么副作用| 没收个人全部财产是什么意思| 三七粉做面膜有什么功效| 本子是什么意思| 什么的饭菜| 犯罪心理学属于什么专业| 清关什么意思| 口腔溃疡该挂什么科| 淋巴细胞数高说明什么| 颈椎头晕吃什么药| 十二指肠胃溃疡吃什么药| 为什么头发突然秃了一块| 指甲发紫是什么原因| 酒酿蛋什么时候吃效果最好| 吃避孕药会有什么副作用| 很困但是睡不着是什么原因| 抬头纹开了是什么意思| jsdun是什么牌子的手表| 免运费是什么意思| 什么人不宜喝咖啡| 胃气胃胀吃什么药最好| 鼻甲肥大是什么原因| 美国属于什么洲| 做完手术吃什么水果好| 少尉是什么级别| 虾仁配什么蔬菜包饺子| 降调针什么时候打| 第二学士学位是什么意思| 什么是童话故事| 开背是什么意思| 分销是什么意思| 谷维素片是治什么病的| 妤读什么| 罗曼蒂克什么意思| 阎维文什么军衔| 红煞是什么意思| 山谷念什么| 长黑斑是什么原因引起的| 瓜子脸适合什么刘海| 杏子不能和什么一起吃| 忘不了鱼在中国叫什么| 广东省省长什么级别| 尾巴骨疼是什么原因| 厅级是什么级别| 梦见自己得了重病预示什么| 梦到拔牙是什么预兆| 梦见猫吃老鼠什么意思| 跖疣是什么原因造成的| 黄五行属性是什么| 脑白质疏松是什么病| 英姿飒爽是什么意思| 这是什么虫子| 澳门的货币叫什么| 代表什么意思| 冷面是什么做的| 复光是什么意思| 非营运车辆是什么意思| 黄瓜生吃有什么好处| zqsg是什么意思| 金银花有什么效果| 蟑螂卵什么样| 肛门口瘙痒涂什么药膏| 喝水多尿少是什么原因| 做透析是什么病| 乳腺彩超什么时候做最准确| 子宫内膜16mm说明什么| 小孩舌头白是什么原因| emr是什么意思| 一个金字旁一个川读什么| 眼睛长眼屎是什么原因| 容易出汗是什么问题| 免疫力低吃什么| 尾盘跳水意味着什么| 梦见自己掉牙是什么意思| 白细胞高什么原因| 0.618是什么意思| 脚气是什么菌感染| 白细胞低是怎么回事有什么危害| 上次闰六月是什么时候| 干眼症用什么药| 7月23号是什么星座| 机警是什么意思| 十月23日是什么星座| 尿结石吃什么药| 梦见牙齿掉光了是什么征兆| sch是什么意思| 牙结石不除有什么危害| 葫芦代表什么生肖| 为什么会长血管瘤| 厚颜无耻是什么生肖| 钛色是什么颜色| 清洁度2度是什么意思| 公积金缴存基数是什么意思| 大佐是什么军衔| 黑茶有什么功效| 乳酸高是什么原因| 94年是什么年| 咽喉疼吃什么药| 甲减有什么症状表现| 血栓吃什么药化得快| 肝脏低回声意味着什么| 随喜是什么意思| 大马猴是什么意思| 脑门痒痒是什么预兆| 血糖高适合喝什么茶| 灵芝适合什么样的人吃| 心态崩了什么意思| 谷丙转氨酶偏高说明什么原因| 什么是心梗| 晚上搬家有什么说法| 身体缺硒有什么症状| 人造石是什么材料做的| 为什么不建议小孩吃罗红霉素| 皮脂腺囊肿吃什么消炎药| 肚脐眼痛什么原因| 胆囊炎可以吃什么水果| 什么东西补血效果最好| pci是什么意思| 女性为什么不适合喝茉莉花茶| 脾阳虚吃什么食物好| nt是什么货币| 西游记是一部什么小说| 热能是什么| 青稞是什么| 阳历8月份是什么星座| 甲状腺有血流信号是什么意思| 断片是什么意思| 兔唇是什么原因造成的| 腋下疣是什么原因造成的| mpv是什么意思| 雷诺氏病是一种什么病| 为什么总是莫名其妙的想哭| 经常吃莲子有什么好处| 足字旁的字跟什么有关| 这个季节吃什么水果最好| 男人洁身自好什么意思| 香菇炒什么好吃| 背债是什么意思| 亲子鉴定去医院挂什么科| 怀孕有什么特征和反应| 和平是什么意思| 龟苓膏不能和什么一起吃| 赤藓糖醇是什么| 今天会开什么生肖| 考试为什么要用2b铅笔| 过敏性鼻炎用什么药最好| 阴道镜是检查什么的| 拉黑色大便是什么原因| 激素是什么| 6月22是什么星座| 养老院护工都做些什么| 坐月子不能吃什么| 节点是什么| 热量的单位是什么| 一个不一个好念什么| 血氨高会导致什么后果| 先自度其足的度是什么意思| 什么麻| 露怯是什么意思| 脚心长痣代表什么| 什么叫集体户口| 北京豆汁儿什么味道| 甲减的原因是什么引起的| 什么情况吃通宣理肺丸| 艺高胆大是什么生肖| 音字五行属什么| 友女是什么意思| 胸部爱出汗是什么原因| 吃什么补维生素d| 老鹰代表什么生肖| 肾功能检查挂什么科| 牛头人是什么意思| 看肝胆挂什么科| 大美是什么意思| 手指发麻是什么原因| 挺拔的意思是什么| 娣什么意思| 吃什么不上火| 眼圈发黑什么原因| 胆木是什么| 1983是什么年| poem是什么意思| 张伦硕为什么娶钟丽缇| 辣椒炒肉用什么肉| 吃什么容易消化| 解离是什么意思| MD是什么| 小便有点黄是什么原因| 3月30日什么星座| 27属相是什么生肖| 空调管滴水是什么原因| 什么是智齿| 下线是什么意思| 山狸是什么动物| swissmade是什么意思| 细菌性结膜炎用什么眼药水| mva是什么单位| 五指毛桃长什么样子| 四风是什么| 1969属什么生肖| 为什么熊猫是国宝| 人工流产后可以吃什么| sq是什么意思| 长期熬夜吃什么可以补回来| maxco是什么牌子| sop是什么意思| 司马光和司马迁是什么关系| 玉屏风颗粒治什么病| 流局是什么意思| 胰腺炎不能吃什么| 高血压应该吃什么| 手心干燥是什么原因| 什么肉最好吃| 玄机是什么意思| af什么意思| 什么是阴阳| 乙型肝炎表面抗体阳性是什么意思| 男人喝什么茶壮阳| 好好好是什么语气| 收缩压偏高是什么意思| 麦芽糖是什么糖| 什么原因导致月经量少| 五月二十四号是什么星座| 怀孕前有什么症状| 中医科是看什么病的| 什么是历史虚无主义| 胃糜烂可以吃什么水果| 尿蛋白质阳性是什么意思| 49岁属什么| 爬山膝盖疼是什么原因| 中国第一艘航空母舰叫什么| 人为什么会怕鬼| 蜜蜡是什么材料| 为什么有两个六月| 丝芙兰属于什么档次| au是什么货币| 1988是什么年| 雪莲果什么季节成熟| 湿热内蕴证有什么症状| 什么人一年只工作一天脑筋急转弯| 为什么叫中日友好医院| 房颤是什么症状| sco是什么意思| 什么叫支原体感染| 极核是什么| 叶酸片什么时候吃最好| 禅心是什么意思| 肠炎有什么症状| 身体安康什么意思| mice是什么意思| 酉是什么意思| 儿童早餐吃什么有营养还能长高| 眼疖子用什么药| 维字五行属什么| 什么时候立夏| 6月19日是什么节日| 12月11日是什么星座| 高血压看什么科| 单亲是什么意思| 过敏能吃什么| 情愫是什么意思| 氧化钙是什么| 百度

Network Working Group                                             C. Zhu
Request for Comments: 2190                                   Intel Corp.
Category: Standards Track                                 September 1997


               RTP Payload Format for H.263 Video Streams

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Abstract

   This document specifies the payload format for encapsulating an H.263
   bitstream in the Real-Time Transport Protocol (RTP). Three modes are
   defined for the H.263 payload header. An RTP packet can use one of
   the three modes for H.263 video streams depending on the desired
   network packet size and H.263 encoding options employed. The shortest
   H.263 payload header (mode A) supports fragmentation at Group of
   Block (GOB) boundaries. The long H.263 payload headers (mode B and C)
   support fragmentation at Macroblock (MB) boundaries.

1. Introduction

   This document describes a scheme to packetize an H.263 video stream
   for transport using RTP [1]. H.263 video stream is defined by ITU-T
   Recommendation H.263 (referred to as H.263 in this document) [4] for
   video coding at very low data rates. RTP is defined by the Internet
   Engineering Task Force (IETF) to provide end-to-end network transport
   functions suitable for applications transmitting real-time data over
   multicast or unicast network services.

2. Definitions

   The following definitions apply in this document:

   CIF: Common Intermediate Format. For H.263, a CIF picture has 352 x
   288 pixels for luminance, and 176 x 144 pixels for chrominance.

   QCIF: Quarter CIF source format with 176 x 144 pixels for luminance
   and 88 x 72 pixels for chrominance.

   Sub-QCIF:  picture source format with 128 x 96 pixels for luminance
   and 64 x 48 pixels for chrominance.



Zhu                         Standards Track                     [Page 1]


RFC 2190       RTP Payload Format for H.263 Video Streams September 1997


   4CIF: Picture source format with 704 x 576 pixels for luminance and
   352 x 288 pixels for chrominance.

   16CIF: Picture source format with 1408 x 1152 pixels for luminance
   and 704 x 576 pixels for chrominance.

   GOB: For H.263, a Group of Blocks (GOB) consists of  k*16 lines,
   where k depends on the picture format (k=1 for QCIF, CIF and sub-
   QCIF; k=2 for 4CIF and k=4 for 16CIF).

   MB: A macroblock (MB) contains four blocks of luminance and the
   spatially corresponding two blocks of chrominance. Each block
   consists of 8x8 pixels. For example, there are eleven MBs in a GOB in
   QCIF format and twenty two MBs in a GOB in CIF format.

3. Design Issues for Packetizing H.263 Bitstreams

   H.263 is based on the ITU-T Recommendation H.261 [2] (referred to as
   H.261 in this document). Compared to H.261, H.263 employs similar
   techniques to reduce both temporal and spatial redundancy, but there
   are several major differences between the two algorithms that affect
   the design of packetization schemes significantly. This section
   summarizes those differences.

3.1 Optional Features of H.263

   In addition to the basic source coding algorithms, H.263 supports
   four negotiable coding options to improve performance: Advanced
   Prediction, PB-frames, Syntax-based Arithmetic Coding, and
   Unrestricted Motion Vectors. They can be used in any combination.

   Advanced Prediction(AP): One or four motion vectors can be used for
   some macroblocks in a frame. This feature makes recovery from packet
   loss difficult, because more redundant information has to be
   preserved at the beginning of a packet when fragmenting at a
   macroblock boundary.

   PB-frames:  Two frames (a P frame and a B frame) are coded into one
   bitstream with macroblocks from the two frames interleaved. From a
   packetization point of view, a MB from the P frame and a MB from the
   B frame must be treated together because each MB for the B frame is
   coded based on the corresponding MB for the P frame. A means must be
   provided to ensure proper rendering of two frames in the right order.
   Also, if part of this combined bitstream is lost, it will affect both
   frames, and possibly more.






Zhu                         Standards Track                     [Page 2]


RFC 2190       RTP Payload Format for H.263 Video Streams September 1997


   Syntax-based Arithmetic Coding (SAC): When the SAC option is used,
   the resultant run-value pair after quantization of Discrete Cosine
   Transform (DCT) coefficients will be coded differently from Huffman
   codes, but the macroblock hierarchy will be preserved. Since context
   variables are only synchronized after fixed length codes in the
   bitstream, any fragmentation starting at variable length codes will
   result in difficulty in decoding in the presence of packet loss
   without carrying the values of all the context variables in each
   H.263 payload header.

   The Unrestricted motion vectors feature allows large range of motion
   vectors to improve performance of motion compensation for inter-coded
   pictures. This option also affects packetization because it uses
   larger range of motion vectors than normal.

   To enable proper decoding of packets received, without dependency on
   previous packets, the use of these optional features is signaled in
   the H.263 payload header, as described in Section 5.

3.2 GOB Numbering

   In H.263, each picture is divided into groups of blocks (GOB). GOBs
   are numbered according to a vertical scan of a picture, starting with
   the top GOB and ending with the bottom GOB. In contrast, a GOB in
   H.261 is composed of three rows of 16x16 MB for QCIF, and three
   half-rows of MBs for CIF. A GOB is divided into macroblocks in H.263
   and the definition of the macroblocks are the same as in H.261.

   Each GOB in H.263 can have a fixed GOB header, but the use of the
   header is optional. If the GOB header is present, it may or may not
   start on a byte boundary. Byte alignment can be achieved by proper
   bit stuffing by the encoder, but it is not required by the H.263
   bitstream specification [4].

   In summary, a GOB in H.263 is defined and coded with finer
   granularity but with the same source format, resulting in more
   flexibility for packetization than with H.261.

3.3 Motion Vector Encoding

   Differential coding is used to code motion vectors as variable length
   codes. Unlike in H.261, where each motion vector is predicted from
   the previous MB in the GOB, H.263 employs a more flexible prediction
   scheme, where one or three candidate predictors could be used
   depending on the presence of GOB headers.






Zhu                         Standards Track                     [Page 3]


RFC 2190       RTP Payload Format for H.263 Video Streams September 1997


   If the GOB header is present in a GOB, motion vectors are coded with
   reference to MBs in the current GOB only. If a GOB header is not
   present in the current GOB, three motion vectors must be available to
   decode one macroblock, where two of them might come from the previous
   GOB. To correctly decode a whole inter-coded GOB, all the motion
   vectors for MBs in the previous GOB  must be available to compute the
   predictors or the predictors themselves must be present. The optional
   use of three motion vector predictors can be a major problem for a
   packetization scheme like the one defined for H.261 when packetizing
   at MB boundaries [5].

   Consider the case that a packet starts with a MB but the GOB header
   is not present. If the previous packet is lost, then all the motion
   vectors needed to predict the motion vectors for the MBs in the
   current GOB are not available. In order to decode the received MBs
   correctly, all the motion vectors for the previous GOB or the motion
   vector predictors would have to be duplicated at the beginning of the
   packet. This kind of duplication would be very expensive and
   unacceptable in terms of bandwidth overhead.

   The encoding strategy of each H.263 CODEC (CODer and DECoder)
   implementation is beyond the scope of this document, even though it
   has significant effect on visual quality in the presence of packet
   loss. However, we strongly recommend use of the GOB header for every
   GOB at the beginning of a packet to address this problem.

   Similar problems exist because of cross-GOB data dependency related
   to motion vectors, but they can not be addressed by using the GOB
   header. For 16CIF and 4CIF pictures, a GOB contains more than one row
   of MBs. If a GOB can not fit in one RTP packet, and the first packet
   containing the GOB header is lost, then MBs in the second packet can
   not compute motion vectors correctly, because they are coded relative
   to data in the lost packet. Similarly,  when OBMC (Overlapped Block
   Motion Compensation) [4] in Advanced Prediction mode is used, motion
   compensation for some MBs in one GOB could use motion vectors of MBs
   in previous GOB regardless of the presence of GOB header. When MBs
   that are used to decode received MBs are lost, those received MBs can
   not be decoded correctly. Each implementation of the method described
   in this document should take these limitations into account.












Zhu                         Standards Track                     [Page 4]


RFC 2190       RTP Payload Format for H.263 Video Streams September 1997


3.4 Macroblock Address

   As specified by H.261, a macroblock address (MBA) is encoded with a
   variable length code to indicate the position of a macroblock within
   a group of MBs in H.261 bitstreams. H.263 does not code the MBA
   explicitly, but the macroblock address within a GOB is necessary to
   recover from packet loss when fragmenting at MB boundaries.
   Therefore, this information must be included in the H.263 payload
   header for modes (mode B and mode C as described in Section 5) that
   allow packetization at MB boundaries.

4. Usage of RTP

   When transmitting H.263 video streams over the Internet, the output
   of the encoder can be packetized directly. For every video frame, the
   H.263 bitstream itself is carried in the RTP payload without
   alteration, including the picture start code, the entire picture
   header, in addition to any fixed length codes and variable length
   codes.  In addition, the output of the encoder is packetized without
   adding the framing information specified by H.223 [6]. Therefore
   multiplexing audio and video signals in the same packet is not
   accommodated, as UDP and RTP provide a much more efficient way to
   achieve multiplexing.

   RTP does not guarantee a reliable and orderly data delivery service,
   so a packet might get lost in the network. To achieve a best-effort
   recovery from packet loss, the decoder needs assistance to proceed
   with decoding of other packets that are received. Thus it is
   desirable to be able to process each packet independent of other
   packets. Some frame level information is included in each packet,
   such as source format and flags for optional features to assist the
   decoder in operating correctly and efficiently in presence of packet
   loss. The flags for H.263 optional features also provide information
   about coding options used in H.263 video bitstreams that can be used
   by session management tools.

   H.263 video bitstreams will be carried as payload data within RTP
   packets. A new H.263 payload header is defined in section 5 on the
   H.263 payload header. This section defines the usage of RTP fixed
   header and H.263 video packet structure.

4.1 RTP Header Usage

   Each RTP packet starts with a fixed RTP header [1]. The following
   fields of the RTP fixed header are used for H.263 video streams:






Zhu                         Standards Track                     [Page 5]


RFC 2190       RTP Payload Format for H.263 Video Streams September 1997


   Marker bit (M bit): The Marker bit of the RTP fixed header is set to
   1 when the current packet carries the end of current frame; set to 0
   otherwise.

   Payload Type (PT): The Payload Type shall specify H.263 video payload
   format using the value specified by the RTP profile in use, for
   example RFC 1890 [3].

   Timestamp: The RTP timestamp encodes the sampling instant of the
   video frame contained in the RTP data packet. The RTP timestamp may
   be the same  on successive packets if a video frame occupies more
   than one packet. For H.263 video streams, the RTP timestamp is based
   on a 90 kHz clock, the same as the RTP timestamp for H.261 video
   streams [5].

4.2 Video Packet Structure

   For each RTP packet, the RTP fixed header is followed by the H.263
   payload header, which is followed by the standard H.263 compressed
   bitstream [4].

   The size of the H.263 payload header is variable depending on modes
   used as detailed in the next section. The layout of an RTP H.263
   video packet is shown as:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 RTP header                                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 H.263 payload header                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 H.263 bitstream                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


5. H.263 Payload Header

   For H.263 video streams, each RTP packet carries only one H.263 video
   packet. The H.263 payload header is always present for each H.263
   video packet.

   Three formats (mode A, mode B and mode C) are defined for H.263
   payload header. In mode A, an H.263 payload header of four bytes is
   present before actual compressed H.263 video bitstream in a packet.
   It allows fragmentation at GOB boundaries. In mode B, an eight byte
   H.263 payload header is used and each packet starts at MB boundaries
   without the PB-frames option. Finally, a twelve byte H.263 payload



Zhu                         Standards Track                     [Page 6]


RFC 2190       RTP Payload Format for H.263 Video Streams September 1997


   header is defined in mode C to support fragmentation at MB boundaries
   for frames that are coded with the PB-frames option.

   The mode of each H.263 payload header is indicated by the F and P
   fields in the header. Packets of different modes can be intermixed.
   All client application are required to be able to receive packets in
   any mode, but decoding of mode C packets is optional because the PB-
   frames feature is optional.

   In this section, the H.263 payload format is shown as rows of 32-bit
   words. Each word is transmitted in network byte order. Whenever a
   field represents a numeric value, the most significant bit is at the
   left of the field.

5.1 Mode A

   In this mode, an H.263 bitstream will be packetized on a GOB boundary
   or a picture boundary. Mode A packets always start with the H.263
   picture start code [4] or a GOB, but do not necessarily contain
   complete GOBs. Four bytes are used for the mode A H.263 payload
   header. The H.263 payload header definition for mode A is shown as
   follows with F=0. Mode A packets are allowed to start at a GOB
   boundary even if no GOB header is present in the bitstream for the
   GOB.  However, such use is discouraged due to the dependencies it
   creates across GOB boundaries, as described in Section 3.3.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |F|P|SBIT |EBIT | SRC |I|U|S|A|R      |DBQ| TRB |    TR         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   F: 1 bit
   The flag bit indicates the mode of the payload header. F=0, mode A;
   F=1, mode B or mode C depending on P bit defined below.

   P: 1 bit
   Optional PB-frames mode as defined by the H.263 [4]. "0" implies
   normal I or P frame, "1" PB-frames. When F=1, P also indicates modes:
   mode B if P=0, mode C if P=1.

   SBIT: 3 bits
   Start bit position specifies number of most significant bits that
   shall be ignored in the first data byte.

   EBIT: 3 bits
   End bit position specifies number of least significant bits that
   shall be ignored in the last data byte.



Zhu                         Standards Track                     [Page 7]


RFC 2190       RTP Payload Format for H.263 Video Streams September 1997


   SRC : 3 bits
   Source format, bit 6,7 and 8 in PTYPE defined by H.263 [4], specifies
   the resolution of the current picture.

   I:  1 bit.
   Picture coding type, bit 9 in PTYPE defined by H.263[4], "0" is
   intra-coded, "1" is inter-coded.

   U: 1 bit
   Set to 1 if the Unrestricted Motion Vector option, bit 10 in PTYPE
   defined by H.263 [4] was set to 1 in the current picture header,
   otherwise 0.

   S: 1 bit
   Set to 1 if the Syntax-based Arithmetic Coding option, bit 11 in
   PTYPE defined by the H.263 [4] was set to 1 for current picture
   header, otherwise 0.

   A: 1 bit
   Set to 1 if the Advanced Prediction option, bit 12 in PTYPE defined
   by H.263 [4] was set to 1 for current picutre header, otherwise 0.

   R: 4 bits
   Reserved, must be set to zero.

   DBQ: 2 bits
   Differential quantization parameter used to calculate quantizer for
   the B frame based on quantizer for the P frame, when PB-frames option
   is used. The value should be the same as DBQUANT defined by H.263
   [4].  Set to zero if PB-frames option is not used.

   TRB: 3 bits
   Temporal Reference for the B frame as defined by H.263 [4]. Set to
   zero if PB-frames option is not used.

   TR: 8 bits
   Temporal Reference for the P frame as defined by H.263 [4]. Set to
   zero if the PB-frames option is not used.

5.2 Mode B

   In this mode, an H.263 bitstream can be fragmented at MB boundaries.
   Whenever a packet starts at a MB boundary, this mode shall be used
   without PB-frames option. Mode B packets are intended for a GOB whose
   size is larger than the maximum packet size allowed in the underlying
   protocol, thus making it impossible to fit one or more complete GOBs
   in a packet. This mode can only be used without the PB-frames option.
   Mode C as defined in the next section can be used to fragment H.263



Zhu                         Standards Track                     [Page 8]


RFC 2190       RTP Payload Format for H.263 Video Streams September 1997


   bitstreams at MB boundaries with the PB-frames option.  The H.263
   payload header definition for mode B is shown as follows with F=1 and
   P=0:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |F|P|SBIT |EBIT | SRC | QUANT   |  GOBN   |   MBA           |R  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |I|U|S|A| HMV1        | VMV1        | HMV2        | VMV2        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The following fields are defined the same as in mode A: F, P, SBIT,
   EBIT, SRC, I, U, S and A. Other fields are defined as follows:

   QUANT: 5 bits
   Quantization value for the first MB coded at the starting of the
   packet.  Set to 0 if the packet begins with a GOB header. This is the
   equivalent of GQUANT defined by the H.263 [4].

   GOBN: 5 bits
   GOB number in effect at the start of the packet. GOB number is
   specified differently for different resolutions. See H.263 [4] for
   details.

   MBA: 9 bits
   The address within the GOB of the first MB in the packet, counting
   from zero in scan order. For example, the third MB in any GOB is
   given MBA = 2.

   HMV1, VMV1: 7 bits each.
   Horizontal and vertical motion vector predictors for the first MB in
   this packet [4]. When four motion vectors are used for current MB
   with advanced prediction option, these would be the motion vector
   predictors for block number 1 in the MB. Each 7 bits field encodes a
   motion vector predictor in half pixel resolution as a 2's complement
   number.

   HMV2, VMV2: 7 bits each.
   Horizontal and vertical motion vector predictors for block number 3
   in the first MB in this packet when four motion vectors are used with
   the advanced prediction option. This is needed because block number 3
   in the MB needs different motion vector predictors from other blocks
   in the MB. These two fields are not used when the MB only has one
   motion vector. See the H.263 [4] for block organization in a
   macroblock.  Each 7 bits field encodes a motion vector predictor in
   half pixel resolution as a 2's complement number.




Zhu                         Standards Track                     [Page 9]


RFC 2190       RTP Payload Format for H.263 Video Streams September 1997


   R : 2 bits
   Reserved, must be set to zero.

5.3 Mode C

   In this mode, an H.263 bitstream is fragmented at MB boundaries of P
   frames with the PB-frames option. It is intended for those GOBs whose
   sizes are larger than the maximum packet size allowed in the
   underlying protocol when PB-frames option is used. The H.263 payload
   header definition for mode C is shown as follows with F=1 and P=1:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |F|P|SBIT |EBIT | SRC | QUANT   |  GOBN   |   MBA           |R  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |I|U|S|A| HMV1        | VMV1        | HMV2        | VMV2        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | RR                                  |DBQ| TRB |    TR         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The following fields are defined the same as in mode B: F, P, SBIT,
   EBIT, SRC, QUANT, GOBN, MBA, R, I, U, S, A, HMV1, VMV1, HMV2, VMV2.
   The rest of the fields (TR, DBQ, TRB) are defined the same as in mode
   A, except field RR. The RR field takes 19 bits, and is currently
   reserved.  It must be set to zero.

5.4 Selection of Modes for the H.263 Payload Header

   Packets carrying H.263 video streams with different modes can be
   intermixed. The modes shall be selected carefully based on network
   packet size, H.263 coding options and underlying network protocols.
   More specifically, mode A shall be used for packets starting with a
   GOB or the H.263 picture start code [4], and mode B or C shall be
   used whenever a packet has to start at a MB boundary. Mode B or C are
   necessary for those GOBs with sizes larger than network packet size.

   We strongly recommend use of mode A whenever possible. The major
   advantage of mode A over mode B and C is its simplicity. The H.263
   payload header is smaller than mode B and C. Transmission overhead is
   reduced and the savings may be very significant when working with
   very low data rates or relatively small packet sizes.

   Another advantage of mode A is that it simplifies error recovery in
   the presence of packet loss. The internal state of a decoder can be
   recovered at GOB boundaries instead of having to synchronize with MBs
   as in mode B and C. The GOB headers and the picture start code are
   easy to identify,  and their presence will normally cause a H.263



Zhu                         Standards Track                    [Page 10]


RFC 2190       RTP Payload Format for H.263 Video Streams September 1997


   decoder to re-synchronize its internal states.

   Finally, we would like to stress that recovery from packet loss
   depends on a decoder's ability to use the information provided in the
   H.263 payload header within RTP packets.

6. Limitations

   The packetization method described in this document applies to the
   1996 version of H.263. It may not be applicable to bitstreams with
   features added after that.

Security Considerations

   Security issues are addressed by RTP [1].  This memo does not bring
   up any additional security issues.

7. Acknowledgments

   The author would like to thank the following people for their
   valuable comments: Linda S. Cline, Christian Maciocco, Mojy
   Mirashrafi, Phillip Lantz, Steve Casner, Gary Sullivan, and Sassan
   Pejhan.

8. References

[1] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
    "RTP: A Transport Protocol for Real-Time Applications", RFC 1889,
    January 1996.

[2] International Telecommunication Union.
    Video Codec for Audiovisual Services at  p x 64 kbits/s,
    ITU-T Recommendation H.261, 1993.

[3] Schulzrinne, H.,
    "RTP Profile for Audio and Video Conference with Minimal
    Control", RFC 1890,
    January 1996.

[4] International Telecommunication Union.
    Video Coding for Low Bitrate Communication, ITU-T Recommendation
    H.263, 1996

[5] Turletti, T., and C. Huitema,
    "RTP Payload Format for H.261 Video Streams", RFC 2032,
    October 1996.





Zhu                         Standards Track                    [Page 11]


RFC 2190       RTP Payload Format for H.263 Video Streams September 1997


[6] International Telecommunication Union.
    Multiplexing Protocol for Low Bitrate Multimedia Communication,
    ITU-T Recommendation H.223, 1995.

7. Author's Address

   C. "Chad"  Zhu
   Mail Stop: JF3-202
   Intel Corporation
   2111 N.E. 25th Avenue
   Hillsboro, OR 97124
   USA

   EMail: czhu@ibeam.intel.com
   Phone: (503) 264-6008
   Fax: (503) 264-1805



































Zhu                         Standards Track                    [Page 12]
11月24日是什么星座 每延米是什么意思 做肌电图挂什么科 吃韭菜有什么好处和坏处 camper是什么牌子
草莓是什么季节的 女人代谢慢吃什么效果最快 遗精频繁是什么原因 金牛后面是什么星座 细菌性阴道炎用什么药好得快
为什么会流鼻血什么原因引起的 珍珠鸟吃什么食物 杏仁有什么作用 什么是智齿牙 颇负盛名的颇是什么意思
嗜的意思是什么 公道自在人心是什么意思 hcg低有什么补救的办法 方巾是干什么用的 毒枭是什么意思
什么药可以溶解血栓hcv8jop1ns0r.cn 热伤风感冒吃什么药hcv8jop2ns3r.cn 梦见冥币是什么意思hcv7jop6ns4r.cn 妨父母痣是什么意思hcv8jop8ns4r.cn 什么是脂肪肝hcv9jop7ns5r.cn
发烧不退烧是什么原因hcv7jop9ns0r.cn 海带是什么植物hcv8jop4ns5r.cn 手不自主颤抖是什么病hcv8jop0ns2r.cn 红豆不能和什么一起吃hcv9jop1ns8r.cn pin是什么意思hcv8jop6ns8r.cn
肌肉代偿是什么意思jiuxinfghf.com uva是什么意思zhiyanzhang.com ur是什么hcv9jop8ns1r.cn 做胃镜前喝的那个液体是什么onlinewuye.com 喉咙痰多吃什么药最好hcv8jop2ns1r.cn
胆在什么位置图片hcv9jop5ns0r.cn 便秘看什么科hcv7jop6ns1r.cn 毛囊炎长什么样hcv8jop8ns1r.cn 失眠为什么开奥氮平片fenrenren.com 宝宝吐奶是什么原因creativexi.com
百度